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Localization of the mean-field superconducting order parameter on random wire networks
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Studies of the magnetic-field dependence of the mean-field transition temperature 7,.(H) of square
superconducting wire networks from which bonds have been removed randomly reveal a washing
out of the cusps in the phase boundary curve with decreasing bond occupation probability p. These
results are consistent with computations implying localization of the mean-field superconducting or-

der parameter.

I. INTRODUCTION

The localization of electrons' and classical waves® in
disordered media, and the interplay between localization
and superconductivity’ have been studied intensively. In
this article we report experiments and numerical compu-
tations which suggest that the initial transition to the su-
perconducting state on square, two-dimensional, lattices
in which some wires joining adjacent sites have been re-
moved at random involves a localized mean-field super-
conducting order parameter.

The superconductivity of wire lattices with submi-
crometer feature sizes, which is the subject of the present
investigations, has been studied in a variety of
geometries. The mean-field theory T,(H) exploits an
isomorphism between the linearized Ginzburg-Landau
(GL) equation and the Schrodinger equation for a particle
of charge 2e.®> The consequence of solving the linearized
Ginzburg-Landau equation for 7,(H) on square net-
works® is a structure of cusps in T, (H).

The motivation for studying square wire networks with
bonds removed was the fact that they could serve as
better models of the infinite cluster of percolation® than
previously studied Sierpinski gaskets,” as in addition to
having a fractal geometry, they incorporated randomness
and dead-end bonds.® For samples with bond occupation
probabilities p =0.54, 0.56, and 0.60, which were studied
initially, neither the anticipated fractal behavior’ in
T,(H) nor cusps in T,(H) were found. The absence of
the structure in 7,(H) for random percolation networks
has also been discussed by Steinmann and Pannetier for
the case of a specific network with a bond occupation
probability p =0.6.°

II. EXPERIMENT

Samples were prepared using electron-beam litho-
graphic techniques described elsewhere.” The networks
consisted of 800X 800 square lattices of wire bonds which
were present with a probability p. The geometry of a par-
ticular structure was fixed in the fabrication process with
the configuration of bonds determined using a random
number generator. The wire widths were approximately
0.3 um and they were 0.05 pm thick. The unit cell size
was about 1.7 um. Normal-state resistances varied from
1 to 100 ©Q and the zero-temperature superconducting
coherence length £(0) in all samples was the order of 0.2
pm.

Sample resistances were measured with a four-probe ac
technique with a current bias of about 1 pA. The electri-
cal leads to the samples were evaporated Al pads at the
corners. The sample resistance was used as the sensor to
determine 7,(H). The mean-field transition temperature
was taken to be that at which the sample resistance was
slightly less than half its normal state value Ry. The
magnetic field was then swept in a semicontinuous
fashion, and the changes in temperature were followed
using the Ge resistance thermometer in thermal contact
with the sample holder. The process was carried out over
a two-hour period for a given trace so as to ensure both
thermal and magnetic equilibrium. Temperature mea-
surements were reproducible between sweeps and were
accurate to better than 50 uK in a single sweep. The de-
tailed structure in 7.(H) versus p was unaffected when
the resistance set point varied from 0.1 to 0.5Rj, al-
though the patterns were sharper at the lower resistances.
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III. THEORY

The eigenvalue equation which follows from the linear-
ized Ginzburg-Landau equation that is used to compute
T.(H) for simple superconducting lattices is of the form

—A;z;cos60+ 3 Ajexpliy;)=0, (1)
J

where A, is the order parameter at node or site i, and the
sum j is over the z; nearest neighbors of the ith node of
the network. The quantity 8=L /£(T.(H)), L is the dis-
tance between the nodes divided by the coherence length,

vy =2m/®y) [ A-ds

is the circulation of the vector potential A along the link
ij, and the flux quantum ®,=hc /2e. Notice that Eq. (1),
with the right-hand side given by AA; instead of zero,
would be very similar to the tight-binding Hamiltonian of
the electronic problem on the network. However, here,
since we are concerned with superconductivity, we are in-
terested only in the zero-eigenvalue case, i.e., A=0. For a
network with bonds removed randomly, there is diagonal
disorder which depends upon z;, and cos(L /§) is taken to
be E.!'! Then the off-diagonal term e''” is correlated
with the diagonal through the applied field H, and T,(H)
or E=cos(L/§) can be determined from the largest
value of E for which Eq. (1) has a solution. In order to
find the eigenvalues and eigenvectors A; of Eq. (1), one
can either diagonalize the Hamiltonian for a given H and
p, or use the transfer-matrix method and finite-size scal-
ing. This latter procedure is useful since it can be used to
study the nature of the different eigenstates A,, in partic-
ular, whether they are localized or extended. Direct di-
agonalizations or a tridiagonalization procedure could
also be used to study the nature of the eigenstates, but is
known not to give accurate results.

In the transfer-matrix method'>!® one considers cou-
pled one-dimensional (1D) systems. Each is described by
a tight-binding Hamiltonian of the same form as Eq. (1).
The corresponding sites of the nearest-neighbor system
are coupled together by an interchain matrix element
tijey'j that depends on the strength of the magnetic field
H and the bond occupation probability p. In particular,
we choose a gauge such that A4 is parallel to the 1D
chains and L =1 if both sites are present, € if one site is
missing, and € if both sites are missing. Then M chains
are coupled together into a 2D array with interchain cou-
pling ¢;; and z; =3 t;;. The additional term ¢,; is neces-
sary to ensure that the lattice is connected. For the M
connected chains of length N, one determines the largest
localization length A, as N— . From a plot of A,,
versus M, one can obtain the localization properties of
the system.!>!3

The localization length A, is obtained from the relation
M /Xy =M /A, while the correlation length &, for ex-
tended states is obtained from A, /M=M/£.. So by
studying the scaling plots A,, /M versus M, one obtains a
reasonable estimate of the mobility edge trajectory. Ex-
actly at the mobility edge, we also find A,, /M =0.6, in
agreement with previous work on electronic localization,
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while for extended and localized states we have that
Ay /M versus M increases or decreases, respectively. For
our studies here we used M equal to 2—64 with N up to
10000 and e=10"* We found that our results were in-
dependent of € provided that € <1073, The phase bound-
ary T,(H), or the largest eigenvalue E =cos(L /&), which
satisfies Eq. (1), is obtained by the calculation of the in-
tegrated density of states (DOS). The technique used is
described in Ref. 14.

The amplitude of the oscillation of T, with magnetic
field depends on the value of the zero-temperature coher-
ence length £(0), a material-dependent parameter. The
quadratic background in T, versus H, which is superim-
posed on the T, oscillations, and is a consequence of the
critical field of the wires themselves, was used to deter-
mine £(0) from the relation AT, =T,,—T.=aH?, which
is derived from the Ginzburg-Landau theory. Here

_ 7d%(0)°T,

a
392

)

d is the film thickness, T, is the zero-field transition tem-
perature, and @ is the flux quantum. The parameter
O(L /&) relevant to the theory is actually material in-

dependent. It can be computed using the relation

O(L /§)=L /&(T,.(H)), where

E(T.(H)=&0)/{[T.(0)—T.(H)]/T.(0)}'/*. ()
IV. RESULTS

Figure 1(a) shows the variation of 6 with magnetic field
for different lattices characterized by values of p. Figure
1(b) shows the results of numerical calculations for the
same p’s. The quantitative differences in the amplitudes
of the curves are possibly a consequence of differences in
the number of squares in the physical wire sample and in
the numerical calculation. Curves in both Figs. 1(a) and
1(b) have been offset for clarity. The fundamental period
of the pattern H,=7.9 Oe is due to the fluxoid quantiza-
tion condition on the elementary squares and corresponds
to an area of ®,/H,=2.62 um?, in good agreement with
the measured area.

The critical feature in both Figs. 1(a) and 1(b) is the
disappearance into the noise of most of the features of the
pattern even with p =0.95. Only the feature correspond-
ing to the cusp at f=1 survives, and this disappears
when p falls to 0.80. As the percolation threshold for the
2D bond problem is p=0.5, these changes occur well
within the connected regime. To confirm the role of ran-
domness, a structure with p=0.8 in which bonds were
removed in a regular fashion was also prepared. A rich
structure in T, (H) was found as is illustrated in Fig. 2.

The cusps in the square network geometry are a mani-
festation of the collective behavior of the network, or the
long-range coherence of the order parameter. Physically,
the persistence of a feature at a submultiple with a
denominator at a particular integer implies coherence
over a distance at least that integer number of cells in the
network. In Fig. 3 we plot the localization length corre-
sponding to edge state eigenfunctions, obtained in the
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manner described above, as a function of p. The very
rapid increase from a value the order of one to two cells
as p approaches unity is seen. When the localization
length for the state corresponding to ®/®,=1 is below
two cell lengths, one might expect the cusp at half a flux

quantum to disappear. This occurs for p=0.8, as seen in
Fig. 3.

V. DISCUSSION

It is also important to note that the mean-field transi-
tion temperature inferred from the solution to the linear
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FIG. 1. (a) Plot of 6=L/&T) vs ® /P, of sample with
different bond occupation probabilities. a: p =1.0, §(0)=0.25
um; b: p=0.98, £(0)=0.11 um; ¢: p=0.96, £(0)=0.20 um; d:
p=0.90, £(0)=0.12 pm; e: p=0.87, £(0)=0.18 pum; f:
p=0.85, £0)=0.18 pum; g p=0.84, £0)=0.19 pm; h:
p=0.81, £(0)=0.29 um. (b) Numerical calculation of 8 for the
values of p in part (a).
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FIG. 2. Plot of 6 vs ® /¢, of a sample with bond occupation
of 0.8, but with a regular pattern of bond removal. The inset
shows the sample design.

GL equations with localized solutions may be neither the
mean-field transition temperature nor the temperature at
which the resistance falls to zero.!”> The former may re-
quire the solution of the nonlinear rather than the linear
GL equations, which is beyond the scope of this work.
The nonlinear term can couple different localized states
which might give a different mean field 7,.(H). In gen-
eral, the energy at which the first solution appears, in-
dependent of whether it is extended or localized, gives an
upper bound for T,.(H), while the energy for the first ex-
tended solution gives the lower bound for T.(H).

The modeling of the transition to zero resistance might
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FIG. 3. Localization length A, as function of bond occupa-

tion probability p for ¢/¢,=1, %7
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involve treating an array like a model granular supercon-
ductor. Instead of real grains, coupled by tunneling junc-
tions or weak links, there would be “patches” of the lo-
calized order parameter the size of the localization
length. In this context the localization of the mean-field
order parameter at the transition might be viewed as a
type of inhomogeneous nucleation of the order parame-
ter. The transition to zero resistance might then result
from phase locking of the patches.

It should be noted that the consequences of removing
bonds in a network appear different from the conse-
quences of introducing positional disorder. In the
theory,'® experiments,!” and simulations'® on positionally
disordered arrays, all structure in R (H) disappears above
a critical magnetic field whose magnitude is inversely
proportional to the disorder. Oscillations in R (H) are,
however, found at low fields. For the bond-removal case,
the structure fades away as p decreases, with the overall
periodicity persisting to substantial values of magnetic
field.

In the case of positional disorder, the fading might be
thought of as arising from a superposition of patterns of
different periods associated with the different areas of the
plaquettes. In the case of networks with bonds removed,
the areas are also random, but are all multiples of the
fundamental cell’s area, as was first pointed out by
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Simonen and Lopez.!"” This probably accounts for the
survival of the single-flux quantum oscillations. Howev-
er, in the bond-removal case there are dead ends and side
chains not present in the case of positional disorder.

In summary, we have studied T.(H) of square wire net-
works. The structure, other than that at multiples ¢y,
fades away with reduced bond occupation probability p, a
result also found in numerical simulations based on
mean-field theory, where it is also accompanied by the lo-
calization of the mean-field order parameter in linear
theory.
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